Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells.

نویسندگان

  • R R Bernhardt
  • C K Patel
  • S W Wilson
  • J Y Kuwada
چکیده

The role of the midline floor plate cells in the neuronal differentiation of the spinal cord was examined by comparing putative GABAergic neurons in wildtype zebrafish embryos with those in cyc-1 mutant embryos. The mutation produces a pleiotropic recessive lethal phenotype and is severe in rostral brain regions, but its direct effect in the caudal hindbrain and the spinal cord is apparently restricted to the depletion of the midline floor plate cells. In wildtype embryos, an antibody against the neurotransmitter GABA labeled the cell bodies, axons, and growth cones of three classes of previously identified neurons; dorsal longitudinal neurons (DoLA), commissural secondary ascending neurons (CoSA), and ventral longitudinal neurons (VeLD). A novel ventral cell type, Kolmer-Agduhr (KA) neurons, was also labeled. In the cyc-1 mutant, abnormalities were observed in some, but not all, of the GABAreactive CoSA, VeLD, and KA axons, while the axonal trajectories of DoLA neurons were not affected. Furthermore, the number of KA cells was reduced in the mutant while the numbers of the other GABAreactive cells were unperturbed. These observations corroborate our earlier hypothesis that the floor plate cells are one of several guidance cues that direct axonal outgrowth near the ventral midline of the spinal cord. They also suggest that the floor plate cells may play a role in the cellular differentiation of the spinal cord of zebrafish embryos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE JOURNAL OF COMPARATIVE NEUROLOGY 326:263-272 (1992) Axonal Trajectories and Distribution of GABAergic Spinal Neurons in Wildtype and Mutant Zebrafish Lacking - Floor Plate Cells

The role of the midline floor plate cells in the neuronal differentiation of the spinal cord was examined by comparing putative GABAergic neurons in wildtype zebrafish embryos with those in cyc-1 mutant embryos. The mutation produces a pleiotropic recessive lethal phenotype and is severe in rostra1 brain regions, but its direct effect in the caudal hindbrain and the spinal cord is apparently re...

متن کامل

Axonal outgrowth by identified neurons in the spinal cord of zebrafish embryos.

The spinal cord of early zebrafish embryos contains a small number of neurons per hemisegment. The earliest neurons are identifiable as individual neurons or small groups of homogeneous neurons and project growth cones that follow stereotyped, cell-specific pathways to their targets. These growth cones appear to bypass some axons but follow others during pathfinding, suggesting that they can di...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short-tail mutation.

The floor plate of the vertebrate nervous system has been implicated in the guidance of commissural axons at the ventral midline. Experiments in chick have also suggested that at earlier stages of development the floor plate induces the differentiation of motor neurons and other neurons of the ventral spinal cord. Here we have examined the development of the spinal cord in a mouse mutant, Danfo...

متن کامل

Pathfinding by identified growth cones in the spinal cord of zebrafish embryos.

The spinal cord of early (18-20 hr) zebrafish embryos consists of a small number of neurons per hemisegment. The earliest neurons are identified and project growth cones that follow stereotyped, cell-specific pathways to reach their termination sites. We have studied the pathways taken by 4 of the early neurons in order to delineate the cells and structures their growth cones encounter during p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 326 2  شماره 

صفحات  -

تاریخ انتشار 1992